855675 | 16:0 Lyso PC

1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine

16:0 Lyso PC

Powder

Size SKU Packaging Price
25mg 855675P-25mg 855675P-25mg 1 x 25mg $149.50
200mg 855675P-200mg 855675P-200mg 1 x 200mg $192.00
500mg 855675P-500mg 855675P-500mg 1 x 500mg $300.00
1g 855675P-1g 855675P-1g 1 x 1g $526.77
Request Bulk Pricing

Chloroform

Size SKU Packaging Price
25mg 855675C-25mg 855675C-25mg 1 x 25mg 10mg/mL 2.5mL $149.50 149.5
200mg 855675C-200mg 855675C-200mg 2 x 100mg 25mg/mL 4mL $192.00 192
Request Bulk Pricing

Info

16:0 Lyso PC

1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine

16:0 Lyso PC, also known as 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, is a remarkable phospholipase-mediated hydrolyzed phosphocholine. This lipid features a saturated fatty acid—palmitic acid (16:0)—as its tail, which is generated through the hydrolysis of the sn-2 acyl chain of phosphatidylcholine (PC) by phospholipase A2. A crucial component of oxidized low-density lipoprotein, 16:0 Lyso PC plays a significant role in inflammatory diseases and atherosclerosis and is a substrate for Autotaxin/LysoPLD, generating lysophosphatidic acid, which is essential for cell motility.

Application

The versatility of 16:0 Lyso PC makes it a powerful tool in various advanced research and therapeutic applications. In microbubble-mediated drug delivery, it enhances the efficiency of targeted therapy applications, particularly in cancer treatment. By integrating into microbubble technologies, 16:0 Lyso PC facilitates precise drug delivery to target sites, optimizing therapeutic outcomes.

Furthermore, its application in photodynamic therapy for glioma underscores its potential in medical treatments. Research has highlighted its role in biohybrid systems for light-activatable therapies, showing promise in treating challenging conditions like glioma. This innovative approach leverages 16:0 Lyso PC to improve clinical outcomes, showcasing its potential to enhance the effectiveness of photodynamic therapy.

Packaging

Avanti Research provides 16:0 Lyso PC in chloroform form in 25 mg and 200 mg packaging and in powder form in 25 mg, 200 mg, 500 mg, and 1 g packaging.

At Avanti Research, we are dedicated to supporting groundbreaking scientific research with top-tier products. Our commitment to excellence ensures that each batch of 16:0 Lyso PC meets the highest standards of purity and performance.


Data
Hygroscopic
Yes
Light Sensitive
No
Molecular Formula
C24H50NO7P
Percent Composition
C 58.16%, H 10.17%, N 2.83%, O 22.60%, P 6.25%
Purity
>99% LPC; may contain up to 10% of the 2-LPC isomer
Stability
1 Years
Storage Temperature
-20°C
CAS Number
17364-16-8
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
495.63
Exact Mass
495.332
Synonyms
1-hexadecanoyl-sn-glycero-3-phosphocholine
PC(16:0/0:0)
110685
Solubility in Different Solvents
Insoluble in DMSO, soluble in ethanol at 1mg/mL, soluble in Chloroform:Methanol:Water (65:25:4) at 5mg/mL
CMC
4 - 8.3µM
References

Valdivia AO, Agarwal PK, Bhattacharya SK. Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Omega. 2020 Jun 16;5(25):15454-15467. doi: 10.1021/acsomega.0c01590. PMID: 32637820; PMCID: PMC7331039.

PubMed ID: 32637820

Shima Y, Morita D, Mizutani T, Mori N, Mikami B, Sugita M. Crystal structures of lysophospholipid-bound MHC class I molecules. J Biol Chem. 2020 May 15;295(20):6983-6991. doi: 10.1074/jbc.RA119.011932. Epub 2020 Apr 8. PMID: 32269076.

PubMed ID: 32269076

Park JM, Kim MJ, Noh JY, Yun TG, Kang MJ, Lee SG, Yoo BC, Pyun JC. Simultaneous Analysis of Multiple Cancer Biomarkers Using MALDI-TOF Mass Spectrometry Based on a Parylene-Matrix Chip. J Am Soc Mass Spectrom. 2020 Apr 1;31(4):917-926. doi: 10.1021/jasms.9b00102. Epub 2020 Mar 24. PMID: 32154716.

PubMed ID: 32154716

Knuplez E, Curcic S, Theiler A, Bärnthaler T, Trakaki A, Trieb M, Holzer M, Heinemann A, Zimmermann R, Sturm EM, Marsche G. Lysophosphatidylcholines inhibit human eosinophil activation and suppress eosinophil migration in vivo. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jul;1865(7):158686. doi: 10.1016/j.bbalip.2020.158686. Epub 2020 Mar 11. PMID: 32171907.

PubMed ID: 32171907

Siriwardane DA, Wang C, Jiang W, Mudalige T. Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Int J Pharm. 2020 Jan 24;578:119077. doi: 10.1016/j.ijpharm.2020.119077. Epub ahead of print. PMID: 31988036.

PubMed ID: 31988036

Saitta F, Signorelli M, Fessas D. Hierarchy of interactions dictating the thermodynamics of real cell membranes: Following the insulin secretory granules paradigm up to fifteen-components vesicles. Colloids Surf B Biointerfaces. 2019 Dec 9;186:110715. doi: 10.1016/j.colsurfb.2019.110715. [Epub ahead of print]. PMID: 31841777.

PubMed ID: 31841777

Shi Q, Jin S, Xiang X, Tian J, Huang R, Li S, Chen C, Xu H, Song C. The metabolic change in serum lysoglycerophospholipids intervened by triterpenoid saponins from Kuding tea on hyperlipidemic mice. Food Funct. 2019 Dec 11;10(12):7782-7792. doi: 10.1039/c9fo02142f.

PubMed ID: 31782452

Li X, Fang P, Sun Y, Shao Y, Yang WY, Jiang X, Wang H, Yang X. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol. 2020 Jan;28:101373. doi: 10.1016/j.redox.2019.101373. Epub 2019 Nov 6.

PubMed ID: 31731100

Park JM, Noh JY, Kim MJ, Yun TG, Lee SG, Chung KS, Lee EH, Shin MH, Ku NS, Yoon S, Kang MJ, Park MS, Pyun JC. MALDI-TOF Mass Spectrometry Based on Parylene-Matrix Chip for the Analysis of Lysophosphatidylcholine in Sepsis Patient Sera. Anal Chem. 2019 Nov 19;91(22):14719-14727. doi: 10.1021/acs.analchem.9b04019. Epub 2019 Oct 29.

PubMed ID: 31621295

Inglut CT, Baglo Y, Liang BJ, Cheema Y, Stabile J, Woodworth GF, Huang HC. Systematic Evaluation of Light-Activatable Biohybrids for Anti-Glioma Photodynamic Therapy. J Clin Med. 2019 Aug 21;8(9). pii: E1269. doi: 10.3390/jcm8091269.

PubMed ID: 31438568

Chagas-Lima AC, Pereira MG, Fampa P, Lima MS, Kluck GEG, Atella GC. Bioactive lipids regulate Trypanosoma cruzi development. Parasitol Res. 2019 Sep;118(9):2609-2619. doi: 10.1007/s00436-019-06331-9. Epub 2019 Jul 2.

PubMed ID: 31267245

Cai H, Cao T, Li N, Fang P, Xu P, Wu X, Zhang B, Xiang D. Quantitative monitoring of a panel of stress-induced biomarkers in human plasma by liquid chromatography-tandem mass spectrometry: an application in a comparative study between depressive patients and healthy subjects. Anal Bioanal Chem. 2019 Jun 14. doi: 10.1007/s00216-019-01956-2. [Epub ahead of print]

PubMed ID: 31201457

Jayaraman S, Fändrich M, Gursky O. Synergy between serum amyloid A and secretory phospholipase A2. Elife. 2019 May 21;8. pii: e46630. doi: 10.7554/eLife.46630.

PubMed ID: 31111824

Daniel J. Stephenson, H. Patrick MacKnight, L. Alexis Hoeferlin, Margaret A. Park, Jeremy C. Allegood, Christopher L. Cardona, and Charles E. Chalfant. A rapid and adaptable lipidomics method for quantitative UPLC-mass spectrometric analysis of phosphatidylethanolamine and phosphatidylcholine in vitro, and in cells. Anal. Methods, 2019,11, 1765-1776. doi: 10.1039/C9AY00052F


Yan Y, Du Z, Chen C, Li J, Xiong X, Zhang Y, Jiang H. Lysophospholipid profiles of apolipoprotein E-deficient mice reveal potential lipid biomarkers associated with atherosclerosis progression using validated UPLC-QTRAP-MS/MS-based lipidomics approach. J Pharm Biomed Anal. 2019 Jul 15;171:148-157. doi: 10.1016/j.jpba.2019.03.062. Epub 2019 Apr 5.

PubMed ID: 30999225

Lin S, Wang TY, Xu HR, Zhang XN, Wang Q, Liu R, Li Q, Bi KS. A systemic combined nontargeted and targeted LC-MS based metabolomic strategy of plasma and liver on pathology exploration of alpha-naphthylisothiocyanate induced cholestatic liver injury in mice. J Pharm Biomed Anal. 2019 Jul 15;171:180-192. doi: 10.1016/j.jpba.2019.04.009. Epub 2019 Apr 8.

PubMed ID: 31009873

Alexenberg C, Afri M, Eliyahu S, Porat H, Ranz A, Frimer AA. Locating intercalants within lipid bilayers using fluorescence quenching by bromophospholipids and iodophospholipids. Chem Phys Lipids. 2019 Jul;221:128-139. doi: 10.1016/j.chemphyslip.2019.03.018. Epub 2019 Apr 4.

PubMed ID: 30954536

Zhang P, Villanueva V, Kalkowski J, Liu C, Donovan AJ, Bu W, Schlossman ML, Lin B, Liu Y. Molecular interactions of phospholipid monolayers with a model phospholipase. Soft Matter. 2019 Apr 8. doi: 10.1039/c8sm01154k. [Epub ahead of print]

PubMed ID: 30958491

Kheirolomoom A, Silvestrini MT, Ingham ES, Mahakian LM, Tam SM, Tumbale SK, Foiret J, Hubbard NE, Borowsky AD, Ferrara KW. Combining activatable nanodelivery with immunotherapy in a murine breast cancer model. J Control Release. 2019 Apr 9;303:42-54. doi: 10.1016/j.jconrel.2019.04.008. [Epub ahead of print]

PubMed ID: 30978432

Lee CW, Lee D, Lee EM, Park SJ, Ji DY, Lee DY, Jung YC. Lipidomic profiles disturbed by the internet gaming disorder in young Korean males. J Chromatogr B Analyt Technol Biomed Life Sci. 2019 May 1;1114-1115:119-124. doi: 10.1016/j.jchromb.2019.03.027. Epub 2019 Mar 23.

PubMed ID: 30951964

Shchegravina ES, Tretiakova DS, Alekseeva AS, Galimzyanov TR, Utkin YN, Ermakov YA, Svirshchevskaya EV, Negrebetsky VV, Karpechenko NY, Chernikov VP, Onishchenko NR, Vodovozova EL, Fedorov AY, Boldyrev IA. Phospholipidic Colchicinoids as Promising Prodrugs Incorporated into Enzyme-Responsive Liposomes: Chemical, Biophysical, and Enzymological Aspects. Bioconjug Chem. 2019 Apr 17;30(4):1098-1113. doi: 10.1021/acs.bioconjchem.9b00051. Epub 2019 Mar 13.

PubMed ID: 30817133

Sonti S, Tolia M, Duclos RI Jr, Loring RH, Gatley SJ. Metabolic studies of synaptamide in an immortalized dopaminergic cell line. Prostaglandins Other Lipid Mediat. 2019 Apr;141:25-33. doi: 10.1016/j.prostaglandins.2019.02.002. Epub 2019 Feb 11.

PubMed ID: 30763677

Miao R, Lung SC, Li X, Li XD, Chye ML. Thermodynamic insights into an interaction between ACYL-COA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. J Biol Chem. 2019 Feb 19. pii: jbc.RA118.006876. doi: 10.1074/jbc.RA118.006876. [Epub ahead of print]

PubMed ID: 30782848

Qin Q, Wang B, Wang J, Chang M, Xia T, Shi X, Xu G. A comprehensive strategy for studying protein-metabolite interactions by metabolomics and native mass spectrometry. Talanta. 2019 Mar 1;194:63-72. doi: 10.1016/j.talanta.2018.10.010. Epub 2018 Oct 10.

PubMed ID: 30609583

Villette C, Maurer L, Delecolle J, Zumsteg J, Erhardt M, Heintz D. In situ localization of micropollutants and associated stress response in Populus nigra leaves. Environ Int. 2019 Mar 6;126:523-532. doi: 10.1016/j.envint.2019.02.066. [Epub ahead of print]

PubMed ID: 30851483

Gallego SF, Hermansson M, Liebisch G, Hodson L, Ejsing CS. Total Fatty Acid Analysis of Human Blood Samples in One Minute by High-Resolution Mass Spectrometry. Biomolecules. 2018 Dec 27;9(1). pii: E7. doi: 10.3390/biom9010007.

PubMed ID: 30591667

Shchegravina ES, Tretiakova DS, Alekseeva AS, Galimzyanov TR, Utkin YN, Ermakov YA, Svirshchevskaya EV, Negrebetsky VV, Karpechenko NY, Chernikov VP, Onishchenko NR, Vodovozova EL, Fedorov AY, Boldyrev IA. Phospholipidic Colchicinoids as Promising Prodrugs Incorporated into Enzyme-Responsive Liposomes: Chemical, Biophysical, and Enzymological Aspects. Bioconjug Chem. 2019 Mar 13. doi: 10.1021/acs.bioconjchem.9b00051. [Epub ahead of print]

PubMed ID: 30817133

Ditz T, Schnapka-Hille L, Noack N, Dorow J, Ceglarek U, Niederwieser D, Schiller J, Fuchs B, Cross M. Phospholipase A2 products predict the hematopoietic support capacity of horse serum. Differentiation. 2019 Jan - Feb;105:27-32. doi: 10.1016/j.diff.2018.12.002. Epub 2018 Dec 6.

PubMed ID: 30554008

Forest A, Ruiz M, Bouchard B, Boucher G, Gingras O, Daneault C, Robillard Frayne I, Rhainds D, Consortium TI, Genetics Consortium TNI, Tardif JC, Rioux JD, Des Rosiers C. A Comprehensive and Reproducible Untargeted Lipidomic Workflow Using LC-QTOF Validated for Human Plasma Analysis. J Proteome Res. 2018 Sep 26. doi: 10.1021/acs.jproteome.8b00270. [Epub ahead of print]

PubMed ID: 30256116

Ausili A, Martinez Valera P, Torrecillas A, Gómez-Murcia V, deGodos AM, Corbalan-Garcia S, Teruel JA, Gomez-Fernandez JC. The anticancer agent edelfosine exhibits a high affinity for cholesterol and disorganizes liquid ordered membrane structures. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01539. [Epub ahead of print]

PubMed ID: 29924618

Stafford, R.E., Fanni, T., Dennis, E.A. (1989) Interfacial properties and critical micelle concentration of lysophospholipids. Biochemistry. 28(12):5113-20.

PubMed ID: 2669968

Interfacial Structure and Hydration of 3D Lipid Monolayers in Aqueous Solution, Halil I. Okur , Yixing Chen, Nikolay Smolentsev, Evangelia Zdrali, and Sylvie Roke, Phys. Chem. B, Article ASAP

PubMed ID: 28263601

Takafumi Enomoto, Roberto Javier Brea, Ahanjit Bhattacharya, and Neal K Devaraj. In Situ Lipid Membrane Formation Triggered by an Intramolecular Photoinduced Electron Transfer. Langmuir, Just Accepted Manuscript

PubMed ID: 28982007

Enomoto T, Brea RJ, Bhattacharya A, Devaraj NK. In Situ Lipid Membrane Formation Triggered by Intramolecular Photoinduced Electron Transfer. Langmuir. 2018 Jan 23;34(3):750-755. doi: 10.1021/acs.langmuir.7b02783. Epub 2017 Oct 19.

PubMed ID: 28982007
Certificates of Analysis

Related Products

855684
22:6 Lyso PC 22:6 Lyso PC Buy Now
855674
2-16:0 Lyso PC 2-16:0 Lyso PC Buy Now
855773
2-18:1 Lyso PC 2-18:1 Lyso PC Buy Now
855677
17:1 Lyso PC 17:1 Lyso PC Buy Now

Cart

Item Price Qty.
${ item.sku }
Base Price: $${ (item.price - (item.options.custompackaging * 4.2 + (item.options.custompackaging > 50 ? 250 : 150))).toFixed(2) }
Custom Packaging: +${ (item.options.custompackaging * 4.2 + (item.options.custompackaging > 50 ? 250 : 150)).toFixed(2) }

Change Custom Packaging
$ ${ item.total.toFixed(2) }
Subtotal: ${ cart.itemSubtotal|money }
${ adjustment.name } ${ adjustment.amountAsCurrency }
Order Total: ${ cart.totalPriceAsCurrency }